High Efficiency Condensing Boilers and Other Ways to Increase System Efficiency

> Presented By Brett Stueland RM Cotton

Outline

Boiler Efficiency Classifications

- Condensing Boilers
 - Efficiency
 - Turndown
 - Materials
 - Designs/Types
 - Venting
 - Maintenance/Commissioning

Other Ways to Increase System Efficiency

Boiler Efficiency Classifications

Standard Efficiency (80-85%)

- Kewanee, Hurst, Unilux, Cleaver Brooks, Slant Fin, Ray Pak, Superior
- Mid Efficiency (87-88%)Thermal Solutions, Lochinvar
- High Efficiency (90+%)
 - Aerco, Viessmann, Lochinvar

NON - CONDENSING

CONDENSING

Boiler Comparison

	STD	MID	HIGH / CONDENSING
Efficiency	80-85%	87-88%	90+%
Min RWT	140°F	140°F	≤50°F
Fuels	Gas/Oil	Gas Only	Gas/Oil*
Physical Size	Large	Small	Small
Venting Type	Cat I or III	Cat I, II, III or IV	Cat IV
Venting Size	Med - Large	Med	Small
Longevity	40+ Yrs	10+ Yrs	20+ Yrs

* Does not condense when firing on oil.

Condensing Boilers

Condensing Boilers Considerations

- Condensing?
- Actual Efficiency
- Material Type
- Technology/Type
 - Firetube
 - Watertube
 - Sectional
- Venting
 - Material
 - Size
 - Max Length
 - Boiler Exhaust Location
- Physical Size
- Clearances
- Noise
- Serviceability
 - Access
 - Parts
 - Qty
 - Proprietary

- Operating Parameters
 - Flow Rates (Min/Max)
 - Min Return Water Temp
 - Max ΔT
 - Max Operating Pressure
- Fuels
 - Nat
 - LP
 - LP Air Mix
 - Nat & LP
 - Digester
 - (Nat or LP) & Oil
- Turndown
- Included Features/Controls
- Years in Service

Efficiency

• UP TO 99% EFFICIENCY AHRI Certified up to 97% Efficiency

Once installed, boilers operate at up to 99% efficiency, while producing low NOx and CO_p .

FEATURES

- High Mass and Water Volume
- Low Cost of Ownership
- Low Electrical Consumption
- Rugged, Robust, Reliable
- Ultra High Efficiencies
- Simple Installation
- Minimal Maintenance Costs

Up To **99%** Thermal Efficiency

How a Condensing Boiler Works

Boiler Combustion Efficiency

O ₂	Excess Air	CO ₂	Dew Point
3%	13%	10.5%	134.2°F
4%	19%	10.0%	132°F
5%	25%	9.6%	130°F
6%	33%	8.9%	127°F
7%	42%	8.3%	124.5°F
8%	55%	7.7%	120.7°F
9%	69%	7.1%	117.8°F
10%	84%	6.5%	114.5°F
11%	105%	5.8%	110.9°F
12%	124%	5.2%	106.5°F
13%	149%	4.7%	103.5°F
14%	173%	4.2%	100.3°F
15%	210%	3.8%	97.9°F
16%	235%	3.1%	92.1°F
17%	265%	2.7%	88.3°F
18%	295%	2.0%	82.5°F
19%	325%	1.5%	77°F

Chart B – O2 & Dew Point

Tests all Boilers at same conditions

 80-180
 High fire

 Most boilers are listed
 www.ahridirectory.org

Directory of Certified Product Performance

The trusted source of performance certified heating, ventilation, air-conditioning, and commercial refrigeration equipment and components.

_	-	_	_	
nrc		E 11		
				 -

- > Air Conditioners and Air Conditioner Coils
- > Baseboard Radiation
- > Boilers
- > Direct Heating Equipment
- > Furnaces
- Or dealer and Direct Occasion and Direct Direct

COMMERCIAL

- > Air Cooled Chilling Packages
- > Air-to-Air Energy Recovery Ventilators
- > Automatic Commercial Ice-Cube Machines and Ice Storage Bins
- > Boilers
- > Central Station Air-Handling Units
- > Comm. Refrigerated Display Merchandisers And Storage Cabinets > Finned Tube
- > Finned Tube
- > Forced Circulation Air-Cooling and Air-Heating Coils
- > Furnaces

Are you a Manufacturer? |Sign In

AHR CERTIFIED.

Are you a CAFS User? |Sign In

Resources

- Find ENERGY STAR Qualified Products
- Verify Certificate
- AHRI Announces New Certification Mark; Implementation Schedule
- Find CEE Qualified Air Conditioning and Heat Pump Systems
- Find Standards | Learn more about Certification Programs
- List of Rerated Products following AHRI verification testing
- Listing of Products that have been Challenged through the AHRI Certification Program
- Find NATE-certified HVACR contractors

Copyright © 2012 Air-Conditioning, Heating, and Refrigeration Institute Home | Terms and Conditions | License Data | Disclaimer | Contact Us | Help with this Site

By clicking the Search Button, I agree to the Terms and Conditions.

									AHRI Certifie	ed Ratings
Trade/Brand Name	Manufacturer	Model Number	Material	Location	Fuel Type	Heating Medium	Input (MBTUH)	Gross Output (MBTUH)	Combustion Efficiency (%)	Thermal Efficiency (%)
AERCO	AERCO INTERNATIONAL, INC.	BMK 1000	Stainless Steel	Indoor	Natural Gas	Water	1000.0	968	96.8	96.8
AERCO	AERCO INTERNATIONAL, INC.	BMK 1500	Stainless Steel	Indoor	Natural Gas	Water	1500.0	1419	95.1	94.6
AERCO	AERCO INTERNATIONAL, INC.	BMK 2000	Stainless Steel	Indoor	Natural Gas	Water	2000.0	1892	95.1	94.6
AERCO	AERCO INTERNATIONAL, INC.	BMK 2500	Stainless Steel	Indoor	Natural Gas	Water	2500.0	2337	94.0	93.5
AERCO	AERCO INTERNATIONAL, INC.	BMK 3.0 LN	Stainless Steel	Indoor	Natural Gas	Water	3000.0	2856	95.2	93.9
AERCO	AERCO INTERNATIONAL, INC.	BMK 3000	Stainless Steel	Indoor	Natural Gas	Water	3000.0	2805	94.0	93.5
AERCO	AERCO INTERNATIONAL, INC.	BMK 6000	Stainless Steel	Indoor	Natural Gas, Propane Gas	Water	6000.0	5670	95.0	94.5
AERCO	AERCO INTERNATIONAL, INC.	BMK 750	Stainless Steel	Indoor	Natural Gas	Water	750.0	721	96.2	95.6

Turndown

Excerpts:

"The turndown ratio has a significant effect on system performance; lack of consideration of the source system's part-load capability has been responsible for many systems that either do not function properly or do so at the expense of excess energy consumption."— 2012 ASHRAE Handbook

 "A higher turndown ratio reduces burner starts, provides better load control, saves wear and tear on the burner, reduces refractory wear, reduces purge-air requirements, and provides fuel savings" – US Department of Energy, Upgrade Boilers with Energy-Efficient Burners

Turndown

Ratio = Max Firing Rate / Min Firing Rate Example 1: 2000MBH Boiler Minimum Firing Rate 100MBH - TURNDOWN = 20:1 (2000/100) Example 2: 2000MBH Boiler Minimum Firing Rate 400MBH - TURNDOWN = 5:1 (2000/400)

Turndown

Stainless Steel (300/400 Series or Duplex)
Aluminum
Copper with External SS or Coated Heat Exchanger
Carbon Steel & Duplex Stainless Steel
Carbon Steel & Corten
Cast Iron

Excerpts taken from 2012 ASHRAE Handbook: HVAC Systems and Equipment

Condensing boilers are typically made of stainless steel or aluminum because copper, cast iron and carbon steel will corrode because of acidic condensation"

"For maximum reliability and durability over the extended product life, condensing boilers should be constructed from corrosion resistant materials throughout the fireside combustion chamber and heat exchangers."

- Stainless Steel (300/400 Series or Duplex)Aluminum
- Copper with External SS or Coated Heat Exchanger
- Carbon Steel & Duplex Stainless Steel
- Carbon Steel & Corten
- Cast Iron

Stainless Steel

Austenitic	Ferritic	Duplex
304/316	430, 439	2205
Moderately Strong	Moderately Strong	Very Strong
Excellent Ductility, Toughness & Weldability	Moderately Ductile, Limited Toughness & Weldability	Good toughness, Ductility & Weldability
Corrosion Resistant	Corrosion Resistant	Corrosion Resistant
Susceptible to Stress Corrosion Cracking	Virtually Immune to Stress Corrosion Cracking	Resistant to Stress Corrosion Cracking
Expensive	Cost Effective	Cost Effective
High Thermal Expansion	Lower Thermal Expansion	Intermediate Thermal Expansion
Low Thermal Conductivity	Higher Thermal Conductivity	Intermediate Thermal Conductivity

Aluminum
Must Use Proper Glycol
Must maintain PH Level

Copper with External SS Heat Exchanger

Carbon Steel with Duplex

Carbon Steel with CorTen

Cast Iron

Condensing Boiler Types

FiretubeWatertubeSectionals

Condensing Boiler Types

NOT SO GOOD MEDIOCRE

GREAT

Condensing Boiler Types

Technology Comparison

	Firetube	Watertube	Flexible Watertube	Sectionals
Water Volume	Medium to High	Low	Medium	Low to Medium
Flow Requirements	Less Stringent	Very Stringent	Less Stringent	Varies
Piping Requirements	Any	Primary/Secondary Only	Any	Varies
Fuels Available	Natural, Propane, Oil, Methane or Combination	Natural or Propane	Natural or Propane	Natural or Propane
Fireside Cleanability	Easy	Moderate	Moderate	Hard
Waterside Scale Issues	Low	High	Moderate	Moderate
Easy Field Repariable HE	NO	NO	YES	Moderate

Condensing Boiler DesignsFiretube - Vertical

Condensing Boiler Designs Firetube - Horizontal

Condensing Boiler Designs Watertube – Stainless Steel

Condensing Boiler Designs Watertube – Stainless Steel

Condensing Boiler Designs Watertube (Flexible) – Stainless Steel

Condensing Boiler Designs Watertube – Copperfin Tube

Condensing Boiler Designs Cast Aluminum Sectional

Condensing Boiler Designs Cast Iron Sectional

Venting for Condensing Boilers

Multiple Configurations

Single sidewall vent room air

Single makeup air

Single sidewall

Single vertical vent

Single Vertical-Concentric Vent

Sidewall Concentric Vent

Multi sidewall vent room air

Multi makeup air

Multi sidewall

Multi vertical vent

Vent Configurations

Venting

Venting
AL29-4C
Polypropylene
CPVC
PVC

Maintenance / Commissioning

Tune Ups / Maintenance

Section	Item	6 Mos.	12 Mos.	24 Mos.	Labor Time
7.2	Igniter-Injector Kit (58023)	*Inspect	Inspect	Replace	15 mins.
7.3	Flame Detector Kit (24356-1)	*Inspect	Inspect	Replace	15 mins.
7.4	Lean O ₂ Sensor (61026)	*Inspect	Inspect		15 mins.
7.5	Combustion Calibration	*Check	Check		1 hr.
7.6	Testing of Safety Devices		See ASME CSD-1 Chart		45 mins.
7.7	Burner			Inspect	2 hrs.
7.8	Condensate Drain Trap	*Inspect	Inspect, Clean & Replace Gaskets	Inspect, Clean & Replace Gaskets	30 mins.
70	Air Filter (59139)		Clean	Replace	15 mins

Maintenance / Commissioning

Commissioning
Verify Proper Operation/Sequencing
Verify Flow
Use Warm Weather Setback

Controls

Sequencing Boilers

- Building Management System / Controls Contractor
- Separate Boiler Sequencing Panel
- Onboard Integrated Sequencing Controller

Other Ways to Increase System Efficiency

Upgrade Burner

- New Modulating
- Add Linkageless Controls
- Higher Burner/Boiler Turndown

Install Coalescing Air Separator

- Install Stack Economizer
- Use Variable Flow Pumps
- New Boilers
 - Base Load
 - Modular

New Plant (Std, Mid or High Eff)

New Burner

Higher Efficiency
Modulation in lieu of On/Off or Low/High
Higher Turndown
Add Backup Fuel
Reduce Capacity

Linkageless Controls

Greater Accuracy
Greater Efficiency
3-15% Fuel Savings
Higher Turndown
Less Service Time
Less Down Time
Independent Fuel Curves
O2 Trim Capable

Coalescing Air Separator

Superior Air Removal Increases Efficiency Increases Heat Transfer Reduces Corrosion Maintains Available Pump Head **Reduces Maintenance Costs** Low Heat Calls Air Bleeding Equipment Corrosion Damage Pump Cavitation Damage

Stack Economizers

 Recovers Wasted Stack Heat
 Steam Boilers – Preheat Boiler Feed Water
 Hot Water Boilers – Preheat Return Water
 Preheat Domestic Water

Variable Speed Pumps

Reduces Energy Consumption

Base Loading

- Multiple Boiler System
- One smaller boiler handles majority of load
- Winter / High Demand Use std fire tube / water tube boilers
- Summer / Low Demand Use high efficiency condensing boilers
- Extend life of large boiler

Modular Systems

Multiple Burner Turndown
1 = 20:1
2 = 40:1
3 = 60:1
4 = 80:1
5 = 100:1

THANK YOU

rmcotton.com